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Abstract. Automatic parallelization of sequential applications using
OpenMP as a target has been attracting significant attention recently
because of the popularity of multicore processors and the simplicity of
using OpenMP to express parallelism for shared-memory systems. How-
ever, most previous research has only focused on C and Fortran ap-
plications operating on primitive data types. C++ applications using
high level abstractions such as STL containers are largely ignored due
to the lack of research compilers that are readily able to recognize high
level object-oriented abstractions of STL. In this paper, we use ROSE,
a multiple-language source-to-source compiler infrastructure, to build a
parallelizer that can recognize such high level semantics and parallelize
C++ applications using certain STL containers. The idea of our work
is to automatically insert OpenMP constructs using extended conven-
tional dependence analysis and the known domain-specific semantics of
high-level abstractions with optional assistance from source code annota-
tions. In addition, the parallelizer is followed by an OpenMP translator
to translate the generated OpenMP programs into multi-threaded code
targeted to a popular OpenMP runtime library. Our work extends the
applicability of automatic parallelization and provides another way to
take advantage of multicore processors.

1 Introduction

Today’s multicore processors have been forcing application developers to paral-
lelize legacy sequential codes and/or write new parallel applications if they want
to take advantage of thread-level parallelism supported by hardware. However,
parallel programming is never an easy task for users, given the stunning work
to deal with extra issues in parallel computing, such as dependencies, synchro-
nization, load balancing, and race conditions. Therefore, parallelizing compilers
and tools are playing increasingly important roles in allowing the full utilization
of new computer systems and enhancing the productivity of users.
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OpenMP [1] is a simple and portable parallel programming model which ex-
tends existing programming languages like C/C++ and Fortran 77/90 to include
additional parallel semantics. The extensions OpenMP provides contain compiler
directives, user level runtime routines and environment variables. Programmers
can use OpenMP to express parallelization opportunities and strategies for ap-
plications. Moreover, the simple API provided by OpenMP has attracted paral-
lelizing compilers and tools to use OpenMP as a target for interactive or auto-
matic parallelization. Representative examples include the Intel C++/Fortran
compiler [2] and the Parawise/CAPO tools [3].

Although numerous parallelizing compilers and tools have been presented
during the past decades, most of them focus only on C and Fortran applica-
tions operating on primitive data types. On the other hand, object-oriented
languages, especially C++, are being widely used for developing scientific com-
puting applications. Those applications are often written with various high level
libraries, such as the C++ Standard Template Library (STL), now part of the
C++ standard. While significantly improving code reuse, high level libraries in
applications often impede program analyses and, consequently, program opti-
mizations. For example, compilers will most likely treat the references to STL
vector elements as opaque function calls (member function operator[]). Without
knowing the semantics of the abstractions, the compilers are not able to apply
necessary analyses for parallelization.

In this paper, we explore compiler techniques to recognize high level abstrac-
tions in C++ applications in order to discover more opportunities for paral-
lelizing applications that use STL. ROSE [4], a source-to-source compiler infras-
tructure, is used to automatically insert OpenMP constructs into a sequential
input C++ code and further translate the generated OpenMP application into
multithreaded code targeted to a popular OpenMP runtime library. In partic-
ular, we extend conventional data dependence analysis to help in parallelizing
object-oriented applications, with optional assistance from source code annota-
tions. Our goal is to automate the process of migrating existing sequential C++
applications to multicore machines and to assist in developing new parallel ap-
plications.

2 The ROSE Compiler Infrastructure

ROSE is a project to define a new type of compiler technology that allows even
non-expert users to exploit compilation techniques to address the analysis and
optimization of user-defined abstractions. It provides a mechanism to construct
specialized source-to-source translators. ROSE is particularly useful in building
custom program analysis and translation tools that operate on source code for
C, C++, and Fortran.

Figure 1 illustrates the main components of ROSE. The Edison Design Group
(EDG) front-end [5] is used to parse C and C++ applications. EDG source
code and interfaces are protected under commercial or research licenses, but
may be distributed freely in binary form. Language support for Fortran 2003
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Fig. 1. The ROSE compiler infrastructure

(including earlier versions back to Fortran IV) is based on the open source Open
Fortran Parser [6] developed at Los Alamos National Laboratory. Internally,
ROSE converts multiple intermediate representations (IR) of the front-ends into
a uniform format, the ROSE Abstract Syntax Tree (AST), which is an object-
oriented IR developed by the ROSE team and based loosely on the Sage++
IR design [7]. Also, a set of distributed symbol tables are associated with the
AST tree to store symbols’ information within each scope. Generic and custom
program analysis and optimization tools can be built on top of the AST, after an
optional phase recognizing high level abstractions of scientific applications. The
ROSE unparser generates source code in the original source language from the
optimized AST, with all original comments and C preprocessor control structures
preserved.

The ROSE AST is a fully type resolved AST, with full overloaded func-
tion resolution and semantic analysis. All information in the application source
code is preserved in the ROSE AST, including C preprocessor control structure,
source comments, source position information, and C++ template information
(e.g., template arguments). In particular, the ROSE AST is an intuitive, object-
oriented IR with a rich set of interfaces for building source-to-source translators.
Users can use the interfaces to quickly implement common operations needed
for conducting program analyses and translations. These operations include AST
traversals in various orders, efficient AST node queries, AST subtree copying,
insertion, removal, and symbol table lookups. In addition, a high-level AST con-
struction API is provided to the users to ease both top-down and bottom-up
construction of AST subtrees and to hide the maintenance details of the sym-
bol tables. Moreover, persistent attributes are introduced in the AST to easily
store and evaluate arbitrary user-defined information, including AST annota-
tions. These attributes are persistent in that they are preserved when the AST is



written out to (and read in from) a binary file. AST traversals form a way to alter-
natively compute and manage attributes on the stack and thus permit attribute
evaluation; the computation of user-defined attributes during top-down traver-
sal (inherited attributes) and/or bottom-up (synthesized attributes) traversals.
Other essential AST utilities provided for the users include AST consistancy
checkers, file I/O, and AST visualization.

A number of generic program analyses and transformations have been devel-
oped for ROSE. They are designed to be utilized by users via simple function
calls to interfaces. The program analyses available include call graph analysis,
control flow analysis, data flow analysis (live variables, def-use chain, reaching
definition, alias analysis etc.), class hierarchy analysis and dependence analysis.
Representative program translations developed with ROSE are partial redun-
dancy elimination, constant folding, inlining, outlining (separating out a portion
of code as a function), and loop transformations (a loop optimizer supporting
aggressive loop optimizations such as fusion, fission, interchange, unrolling and
blocking).

The unparser serves as a code-generator for ROSE. It unparses the AST to
generate C/C++ and Fortran source code. Users can direct the unparser to un-
parse all included header files or only the original source files. This control is
desired when new user-defined data types are added during a transformation.
The unparser can also be invoked as needed during a transformation. It converts
the entire AST or a portion of it into corresponding source code. This feature
helps developers to debug a transformation in multiple stages. Finally, a ven-
dor compiler is optionally called to continue the compilation of the generated
(optimized) source code; generating a final executable.

The unique features of ROSE have attracted more than three dozen users
worldwide for various research, development and education purposes. For ex-
ample, internal users at Lawrence Livermore National Laboratory are using it
for optimizing data structure abstractions and components. External users from
other national laboratories, universities, and companies have been using ROSE
to support code instrumentation, static analysis, formal rewrite systems, empir-
ical tuning, MPI verification, etc.

3 Domain-Specific Abstractions

General purpose languages typically permit the construction of abstractions;
represented by functions, data structures, etc. These permit high level represen-
tations of typically user-defined concepts. C++, as an object-oriented language,
supports more complex abstractions and encourages the use of classes, member
functions, templates, etc. ROSE uses a high level IR which permits the high
fidelity representation of such abstractions without loss of precision. As a result,
program analysis can see all the details of the use of the high-level abstractions
typically lost in a lower level IR.

Knowledge of the semantics of the abstractions can be a short-cut for program
analysis focused on the analysis of the implementation of an abstraction. In the



case of complex abstractions with semantics hidden behind the use of pointers,
leveraging known or published semantics of the abstractions can often be more
productive. Since ROSE does not lower the high level representation to lose
details of the use of specific abstractions in applications, the context of their
use can be combined with their known semantics to provide fundamentally more
information than could be known from static analysis alone. Leveraging this
information is what permits higher levels of optimization for applications using
such knowledge about high-level abstractions.

As an example, the knowledge that STL vectors are contiguous in memory
is critical to numerous optimization opportunities of the STL vector container
abstraction. Yet the specification of a vector abstraction would not require such
implementation-specific detail. That it is specified in the standard is knowledge
that can be leveraged, but might be impossible to obtain from an analysis of
a specific STL implementation because of the complexity of its internal pointer
handling. The efforts to optimize the abstraction are counter productive to the
discovery via static analysis. Worse yet, a required conservative approach would
have to prove such a property. In contrast our optimizations, can leverage the
fact from the specification, and assume a compliant implementation.

4 Automatic Parallelization

In this section, we describe the parallelization methods we use for building a
parallelizer to automatically generate OpenMP directives for C++ applications
using high level object-oriented data types, including STL containers. We fo-
cus on loops because they are often the most time-consuming part in scientific
applications.

We propose the following algorithm to parallelize loops for an input appli-
cation. The loops may contain variables of either primitive data types or STL
container types, or both.

1. Traverse AST and build a loop hierarchy.
2. Identify candidate loops based on their forms and computation requirements.
3. For each selected loop, do the following tasks:

(a) Perform dependence analysis on variable references, including scalars
and arrays of both primitive types and STL types.

(b) Compute liveness information for variables referenced.
(c) Judge the safety of parallelization and decide on variable classifications.
(d) Annotate the loop with parallelization information if it is parallelizable.
(e) Insert OpenMP directives based on the parallelization annotations.

The parallelizer starts by building a loop hierarchy at points in the AST in or-
der to facilitate the traversal of loops under investigation. A loop candidate selec-
tion phase immediately follows to avoid unnecessary, expensive program analyses
for automatic parallelization. The selection phase uses two main criteria to see
if a loop is worth consideration: whether it is a canonical for loop and whether it
has enough computation work to justify possible parallelization efforts. We define



a canonical for loop as a loop with a format of either for (i = lb; i < ub; i += stride)

or for (i = ub; i > lb; i −= stride). Statically estimating computation cost [8] to jus-
tify parallelization with OpenMP, namely profitability analysis, can be a very
complicated process. A simple estimation method is adopted in our algorithm
since we only need profitability analysis to preselect the candidate loops. The
method is based on a cost table mapping computational AST nodes and their
estimated execution cost. A loop traversal accumulates the cost of all nodes per
loop iteration and multiplies the cost with the iteration count to get the final
estimation. An alternative profitability analysis could be profile-guided: leverag-
ing the persistent attribute mechanism, ROSE is able to annotate the AST with
arbitrary performance information collected by external performance tools like
HPCToolkit [9]. The parallelizer can directly retrieve the computation require-
ments of loops from performance information obtained from past executions.
A configurable number is provided as a threshold to decide whether the loop
warrants parallelization.

The essential work of the parallelizer relies on dependence analysis and live-
ness analysis. Both analyses are actually conducted at the function level so loops
within the same function can share the results. The dependence analysis gives
dependence information for variable referenced (excluding loop induction vari-
ables) in the loop. But this information alone is not enough for aggressive par-
allelization using OpenMP because some of the loop-carried dependences can
be eliminated by using data-sharing clauses provided by OpenMP. Therefore,
we also conduct variable classification based liveness analysis to exclude certain
loop-carried data dependences that would otherwise prohibit safe parallelization.
With the final dependence and variable classification results, the parallelizer at-
taches parallelization information as persistent attributes to the loop without
any loop-carried dependences

The final work of the parallelizer is to generate the actual OpenMP direc-
tives for loops guided by the associated persistent attributes for the parallel
information of each loop. We give more details of the parallelizer in the follow-
ing subsections.

4.1 Dependence Analysis

Dependence analysis is the basis for the parallelizer to decide whether a loop
is parallelizable. ROSE conducts dependence analysis and builds dependence
graphs in the loop optimizer, which implements algorithms proposed in [10, 11]
to effectively transform both perfectly nested loops and non-perfectly nested
loops. An extended direction matrix (EDM) dependence representation is used
to cover non-common loop nests that surround only one of the two statements
in order to handle non-perfectly nested loops. For array accesses within loops, a
Gaussian elimination algorithm is used to solve a set of linear integer equations
of loop induction variables.

Figure 2 gives an example dependence graph dump for an input code, in
which a statement is surrounded by two loops (commonlevel = 2). Two true
dependence relations exist, caused by two pairs of array references and carried



1 for (i=1;i<n;i++)
2 for (j=1;j<m;j++)
3 a[i][j]=a[i][j−1]+a[i−1][j];
4 /∗
5 dep SgExprStatement @3−−> SgExprStatement @3
6 2∗2 TRUE DEP; commonlevel = 2 CarryLevel = 1
7 SgPntrArrRefExp:a[i])[j] @3:14−>SgPntrArrRefExp:a[i][j − 1] @3:19
8 == 0; ∗ 0;
9 ∗ 0; == −1;

10
11 dep SgExprStatement @3−−> SgExprStatement @3
12 2∗2 TRUE DEP; commonlevel = 2 CarryLevel = 0
13 SgPntrArrRefExp:a[i][j]@3:14−>SgPntrArrRefExp:a[i − 1][j]@3:31
14 == −1; ∗ 0;
15 ∗ 0 ; == 0;
16 ∗/

Fig. 2. An example output of ROSE’s dependence graph

in both loop levels (CarryLevel = 0 and CarryLevel = 1). The extended direction
matrices give the dependence directions(one of =, ≤,≥, and ∗) and alignment
factors. The details of the dependence analysis and corresponding graph can be
found in [10,11]. It is clear from the dependence analysis that the example code
in Fig. 2 cannot be parallelized because of loop-carried dependences in both loop
levels.

Extending the existing dependence analysis in ROSE to handle STL contain-
ers is straightforward because full C++ type information is preserved in AST.
The key is to tell if some function calls are semantically equivalent to a sub-
scripted element access of an array-like object. For simple cases like processing
std::vectors of integers, checking the qualified type and function names associated
with a function call in the AST will be sufficient to find an eligible STL container
reference that can be treated as a subscripted array element access in the paral-
lelizer. Dependence analysis can then also be easily carried out. However, given
the complexity of user applications and limitations of static compiler analysis,
additional information is often used to help the parallelizer to recognize array
access semantics buried in high level user-defined abstractions and to enable the
dependence analysis.

We leverage the array abstraction annotations [12] previously done in ROSE
to aid in recognizing complex array-like containers and their corresponding el-
ement access member functions. In addition, side effects of function calls and
alias information are also represented using source code annotations to facilitate
conducting dependence analysis on loops with function calls and pointer refer-
ences. Two types of annotations are used: one for class declarations and the other
for member functions and regular functions. We use class annotations such as
is-array and inheritable to indicate a user-defined STL container has array-like
semantics and such semantics can be inherited. Function annotations express if
a member function is an element access function and give lists of variables that
may be modified, read, or aliased inside a function. A future side-effect analysis
could eliminate some or all of this step.



4.2 OpenMP Variable Classification

OpenMP loop variable classification is used by the parallelizer to figure out
which data-sharing attribute clause should be used for variables referenced in-
side a possible parallelizable loop. It is also used to exclude certain loop-carried
dependences which would otherwise prevent possible parallelization.

Our variable classification is based on the classic liveness analysis [13], which
decides if a variable may be used in the future at a certain position in the code.
Table 1 shows the categories of data-sharing attributes for variables based on
their live-in (before the execution of a loop) and live-out (after the execution of
a loop) analysis results. For instance, a private variable inside a loop is neither
live-in nor live-out of the loop, which means the variable is immediately killed
(redefined) inside the loop and then used inside the loop somehow, but is never
going to be used anywhere after the loop. All loop index variables are also
classified as OpenMP private variables to a avoid possible race condition. On
the other hand, shared variables are live at both the beginning and the end of
the loop. Firstprivate and lastprivate variables are live at either only the beginning
or only the end of the loop, respectively.

Table 1. OpenMP variable classification based on liveness analysis

Data-sharing attribute Live-in Live-out

shared Yes Yes

private No No

firstprivate Yes No

lastprivate No Yes

Reduction variables are handled specially to maximize the opportunities for
parallelization. A typical reduction operation inside a loop, such as sum = sum + a[i],
causes a loop-carried output dependence, a loop-carried anti-dependence, and a
loop independent anti-dependence. We use an idiom recognition analysis to cap-
ture such typical operations and exclude the associated loop-carried dependences
when deciding if a loop is parallelizable.

4.3 Representing Parallelization Information

The persistent AST attribute mechanism in ROSE is used to represent paral-
lelization information associated with OpenMP directives.

Figure 3 gives an excerpt of the C++ type we use to store OpenMP informa-
tion in the AST. The information of an OpenMP directive is represented by an
instance of OmpAttribute, which is a subclass of the persistent attribute AstAttribute.
OmpAttribute contains all possible information for an OpenMP directive, including
the directive type (omp parallel, omp for, omp section, omp master, etc.), a list of
referenced variables (stored as OmpSymbols for variables in clauses such as private,
shared, and reduction and so on), and others (hasNowait, schedule type and chunk



1 class OmpAttribute:public AstAttribute
2 {
3 public:
4 omp construct enum omp type;
5 Rose STL Container < OmpSymbol ∗ >var list;
6 bool hasLastprivate;
7 bool hasFirstprivate;
8 bool hasReduction;
9 bool hasNowait;

10 bool hasOrdered;
11 bool isOrphaned;
12 omp construct enum sched type;
13 SgNode ∗chunk size;
14 //...
15 }

Fig. 3. Representing OpenMP semantics using an AST persistent attribute.

size, etc.). All variables appearing in a directive are kept in a list of OmpSymbols,
which associate the variables and the corresponding OpenMP semantics such
as that variable x is a threadprivate variable. It is possible to have one variable
with two OmpSymbols in the list because a variable may appear in two OpenMP
clauses, such as firstprivate and lastprivate.

OmpAttributes are designed to be attached to a structured block enclosed by
an OpenMP directive. In addition to supporting automatic parallelization, at-
tributes are also used to store information from an OpenMP directive parser pro-
cessing C/C++ pragmas or Fortran comments. As a result, the later OpenMP
translation has a uniform view of the AST and associated parallelization informa-
tion for either manually coded or automatically generated OpenMP programs.

5 OpenMP Translation

The automatically generated OpenMP code can be either directly output to users
or further translated into multithreaded code by ROSE. An OpenMP translator
has been implemented in ROSE to enable streamlined processing from automatic
OpenMP insertion to OpenMP translation. It also acts as a standalone OpenMP
implementation when the input source applications already have user-introduced
OpenMP directives.

As shown in Fig. 4, the ROSE OpenMP translator consists of two phases: a
top-down AST processing phase (OmpFrontend) to collect and propagate OpenMP
directive information down through the AST and a bottom-up AST process-
ing phase (OmpMidend) to conduct the actual transformations for each type of
OpenMP construct. We provide our own OmpFrontend to parse OpenMP direc-
tives because neither the EDG front-end nor Open Fortran Parser supports
OpenMP. With the clear interface to represent OpenMP using OmpAttribute,
OmpFrontend can be easily replaced when the actual language frontends become
able to parse OpenMP. Also, OmpMidend is able to translate the AST annotated
with OmpAttributes generated from either OmpFrontend or the parallelizer. The Omni
OpenMP compiler’s runtime library [14] is used to provide low level library calls
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generated by the ROSE OpenMP translator; the translation framework can be
changed to work with other runtime systems as necessary.

OmpMidend is divided into two phases: a preprocessing phase and a transla-
tion phase. The preprocessing phase is responsible for loop normalization and
directive processing. Loop normalization converts all parallelizable loops into
canonical forms to simplify the loop rewriting needed for OpenMP translation
and the connection between translation and the runtime support (especially the
loop scheduling support). Combined OpenMP directives such as omp parallel for

and omp parallel sections are split into separated directives in order to reuse the
individual translators for each types of OpenMP directives in the translation
phase as much as possible. Some implicit OpenMP constructs, such as the first
omp section, are made explicit. Semantic checks for OpenMP constructs can also
be done in this phase.

To achieve maximum portability, an outlining translation strategy is adopted
in the translation phase of OmpMidend, in which a parallel region is outlined to a
separate function and that function is passed to an OpenMP runtime function to
spawn new threads. Fig. 5 gives the code snippet translating a parallel region.
It starts with retrieving the OmpAttribute attached to the structured block en-
closed by a parallel region. Then a function skeleton is generated for an outlined
function. Various variable declarations for shared, private and other OpenMP
variables are inserted into the outlined function’s body, followed by a block of
statements copied from the original structured block. The next step is to replace
variable references inside the copied block with new references to the newly de-
clared variables. Finally, the completed outlined function is inserted to the AST
and the structure block is replaced with the runtime function call spawning
threads.

Translations for other OpenMP directives involve similar operations on the
AST tree including attribute retrieval, AST traversal, building, copying, in-



1 void OmpMidend::transParallelRegion(SgNode∗ block)
2 {
3 AstAttribute∗ astattribute=block−>getAttribute(”OmpAttribute”);
4 OmpAttribute ∗ ompattribute=
5 dynamic cast<OmpAttribute∗ > (astattribute);
6 // ...
7 //Build an outlined function
8 SgFunctionDeclaration ∗ func = buildDefiningFunctionDeclaration \
9 (func name, func return type,parameterList,globalscope);

10 SgBasicBlock ∗ body = func−>get definition()−>get body();
11 addSharedVarDeclarations(ompattribute, body);
12 addPrivateVarDeclarations(ompattribute, body);
13 addThreadprivateDeclarations(ompattribute,body);
14 // copy the statements inside the original block
15 SgBasicBlock ∗bBlock2 = buildBasicBlock();
16 appendStatement(bBlock2,body);
17 deepCopy(block, bBlock2);
18 variableSubstituting(ompattribute, bBlock2);
19 if(ompattribute−>hasReduction)
20 addReductionCalls(ompattribute,body);
21 insertOutlinedFunction(block, outFuncDecl);
22
23 //Replace the original block with a runtime library call
24 SgBasicBlock ∗rtlCall=
25 generateParallelRTLcall(block, func, ompattribute);
26 replaceBlock(block, rtlCall);
27 }

Fig. 5. Translating a parallel region

sertion, and replacement. The details of the translations are similar to other
OpenMP implementations [14, 15] and are out of the scope of this paper. The
rich interfaces provided by ROSE largely ease the work of manipulating the AST
by transparently taking care of many low level side effects occurring during code
transformation, including those associated with symbol tables, parent and scope
edges, and preprocessing information.

6 Preliminary Results

As this work is an ongoing project, we present some preliminary results in this
section. Several computation kernels in C and C++ were chosen to test the
automatic parallelization and the OpenMP translation. Figure 6 gives speedup
of a C Jacobi program (4-point stencil using array copying in each iteration)
and a C++ vector 2-norm distance calculation (

√∑n
i=1 (xi − yi)2) program.

We ran the experiments on a dual processor Dell Precision T5400 workstation.
Each processor (Intel Xeon X5460) has four cores running at 3.16 GHz, for
a total of eight cores. GCC 4.1.2 was used as the backend compiler without
using any optimization flags. The vector calculation used 100 million elements
and the Jacobi iteration used a 500x500 double precision array. As shown in
Fig. 6, our algorithm is able to recognize the parallelizable loops using either
C primitive arrays or STL vectors. The OpenMP translation can also generate
correct multithreaded code and achieve scalable performance.
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We have implemented OpenMP 2.5 for C and C++ using ROSE. Fortran sup-
port is also being added. The implemented OpenMP constructs include omp parallel,
omp for, omp sections, data environment clauses (private, firstprivate, lastprivate,
threadprivate, reduction, copyin), omp master, omp atomic, omp critical, omp flush,
etc. Mainstream OpenMP benchmarks such as the OpenMP validation suite [16],
EPCC microbenchmark [17] and NAS parallel benchmarks [18] have been used
to verify the correctness and robustness of the ROSE OpenMP translator.

7 Related Work

Numerous research compilers have been developed to support automatic par-
allelization. For example, the Vienna Fortran compiler (VFC) [19] is a source-
to-source parallelization system for an optimized version of High Performance
Fortran. PARADIGM [20] focuses on parallelization on distributed-memory mul-
ticomputers. The Polaris compiler [21] is mainly used for improving loop-level
automatic parallelization [22]. The SUIF compiler [23] was designed to be a par-
allelizing and optimizing compiler supporting multiple languages. However, to
the best of our knowledge current research parallelizing compilers only support
Fortran and/or C applications. Commercial parallelizing compilers like the Intel
C++/Fortran compiler [2] also use OpenMP internally as a target for auto-
matic parallelization. Our work in ROSE aims to complete existing compilers
by providing a multiple-language, source-to-source, parallelizing compiler infras-
tructure.

Several papers in the literature present parallelization based on C++ Stan-
dard Template Library (STL). The Parallel Standard Template Library (PSTL) [24]
uses parallel iterators and provides some parallel containers and algorithms. The
Standard Template Adaptive Parallel Library (STAPL) [25] is a superset of the
C++ STL. It supports both automatic parallelization and user specified paral-
lelization policies with several major components, including parallel containers



(pContainers) and algorithms (pAlgorithms), randomly accessible data ranges
(pRange), a distributor for data distribution, a scheduler to enforce data depen-
dence, and an executor. GCC 4.3’s runtime library (libstdc++) provides an ex-
perimental parallel mode, which implements an OpenMP version of many C++
standard library algorithms [26, 27]. However, all library-based parallelization
methods require users to make sure that their applications are parallelizable.
Our work tries to extend conventional compiler analysis to automatically ensure
the safety of parallelization with the help of optional source code annotations.

A number of research compilers support OpenMP. Most of them adopt a simi-
lar source-to-source translation approach using outlining. For example, Omni [14]
is a popular source-to-source translator supporting C/Fortran 77 with a portable
OpenMP runtime library based on POSIX and Solaris threads. OdinMP/CCp [28]
is another source-to-source translator with only C language support. PCOMP [29]
contains an OpenMP parallelizer and a translator for Fortran 77. OpenUH [15]
is one of the few research compilers with backends. It is based on the Open64 [30]
compiler and also has limited source-to-source translation capability. ROSE is a
unique source-to-source compiler infrastructure because it handles C++ appli-
cations with OpenMP.

Some previous research [31, 32] has initially explored OpenMP implementa-
tion in ROSE and the parallelization opportunities using the high-level semantics
of A++/P++ libraries and user-defined C++ containers. This paper presents
a more robust OpenMP implementation in ROSE, considers more generic C++
applications using the Standard Template Library, and incorporates dependence
analysis to further broaden the applicable scenarios.

8 Conclusions and Future Work

In this paper, we have presented automatic parallelization for C++ applica-
tions using the ROSE source-to-source compiler infrastructure. Our work uses
OpenMP as a target for parallelization and considers STL container types in
C++ applications in addition to conventional primitive data types as in C or
Fortran. A full-featured OpenMP translation has also been provided to enable
wider OpenMP development and research using ROSE. The unique features
available in ROSE, such as the rich AST manipulation interfaces and abundant
generic compiler analyses, have provided excellent support for this work. Our
work extends the applicability of automatic parallelization and provides another
way to exploit multicore processors.

Importantly, the explicit use of OpenMP can be at conflict with loop op-
timizations, because OpenMP translation happens in a preliminary step be-
fore program analyses that would permit significant loop restructuring (in later
phases of the compilation). We expect that the automated insertion of OpenMP
directives is strategic since a source-to-source approach permits us to delay the
OpenMP specific translation until after the source-to-source loop optimization.
In conventional OpenMP compilers the OpenMP translation precedes the later
phases of compilation where the program analysis is done and loop transfor-



mations are implemented. Conventional loop fusion is more feasible when ap-
plied to the loop structure before translation using OpenMP. Loop optimiza-
tions combined with OpenMP is thus fundamentally more aggressive and we
expect less likely to occur in explicitly annotated OpenMP code. We antici-
pate this level of optimization is important for multicore optimizations because
the loop optimizations are required to support reuse of variables for cache op-
timization. Without the loop optimizations ahead of the OpenMP translation,
the OpenMP-translated loops would be translated to forms that would make
their fusion significantly more complex. We expect that future work will layout
the advantages and disadvantages of being able to stage source-to-source loop
optimization ahead of the OpenMP translation.
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